Extra Questions on Polynomials Class 9
Q1. Find the remainder when \({y^3} + {y^2} - 2y + 5\) is divided by y - 5.
Q2. Determine the remainder when p(x) = \({x^3} + 3{x^2} - 6x + 15\) is divided by x - 2.
Q3. When \(f(x) = {x^4} - 2{x^3} + 3b{x^2} - ax\) is divided by x+1 and x - 1, we get remainder as 19 and 5 respectively. Find the remainder if f(x) is divided by x - 3.
Q4. What must be subtracted from \(4{x^4} - 2{x^3} - 6{x^2} + x - 5\) so that the result is exactly divisible by \(2{x^2} + 3x - 2\) ?
Q5. If (x + 1) and (x - 1) both are factors of \(a{x^3} + {x^2} - 2x + b\), find a and b.
Q6. Factorize each of the following expressions:
- \(48{x^3} - 36{x^2}\)
- \(5{x^2} - 15xy\)
- \(15{x^3}{y^2}z - 25x{y^2}{z^2}\)
Q7. Factorize:
- \(2{x^2}(x + y) - 3(x + y)\)
- \(5xy(5x + y) - 5y(5x + y)\)
- \(x({x^2} + {y^2} - {z^2}) + y({x^2} + {y^2} - {z^2}) + z({x^2} + {y^2} - {z^2})\)
- \(ab({a^2} + {b^2} - {c^2}) + bc({a^2} + {b^2} - {c^2}) + ca({a^2} + {b^2} - {c^2})\)
Q8. Factorize each of the following expressions:
- \(25{x^2}{y^2} - 20x{y^2}z + 4{y^2}{z^2}\)
- \(4{x^2} - 4\sqrt 7 x + 7\)
- \(\dfrac{{{a^2}}}{{{b^2}}} + 2 + \dfrac{{{b^2}}}{{{a^2}}}\)
- \(4{a^2} + 12ab + 9{b^2} - 8a - 12b\)
Q9. Factorize each of the following:
- \(25{x^2} - 36{y^2}\)
- \(2ab - {a^2} - {b^2} + 1\)
- \(36{a^2} - 12a + 1 - 25{b^2}\)
- \({a^4} - 81{b^4}\)
- \({a^{12}}{b^4} - {a^4}{b^{12}}\)
- \(4{x^2} - 9{y^2} - 2x - 3y\)
Q10. Factorize by completing the square.
- \({a^4} + {a^2} + 1\)
- \({y^4} + 5{y^2} + 9\)
- \({x^4} + 4\)
- \({x^4} + 4{x^2} + 3\)
Q11. Factorize by completing the square.
- \({a^3} - 27\)
- \(1 - 27{x^3}\)
- \(8{x^3} - {(2x - 3y)^3}\)
- \({a^8} - {a^2}{b^6}\)
- \({a^3} - 5\sqrt 5 {b^3}\)
Q12. Factorize the following:
- \(16{p^3}{q^2} + 54{r^3}\)
- \(\dfrac{{{a^3}}}{8} + 8{b^3}\)
- \(2\sqrt 2 {a^3} + 3\sqrt 3 {b^3}\)
- \(8{a^4}b + \dfrac{1}{{125}}a{b^4}\)
- \({a^7} - 64a\)
Q13.Q13. Factorize:
- \({x^3} + 9{x^2} + 27x + 27\)
- \({x^3} - 9{x^2}y + 27x{y^2} - 27{y^3}\)
Q14. Using identities, find the value of
- 1012
- 982
- (0.98)2
- 101 × 99
- 190 × 190 - 10 × 10
Q15. Expand using suitable identity
- (x + 5y + 6z)2
- (2a - 3b + 4c)2
- ( - a + 6b + 5c)2
- (- p + 4q - 3r)2
Q16. Expand using suitable identity
- (2x + 5y)3
- (5p - 3q)3
- (- a + 2b)3
Q17. Evaluate using identities
- 1023
- 993
Q18. Simplify :
- (2a + b)3 + (2a - b)3
- (4x + 5y)3 - (4x - 5y)3
Q19. Factorize:
- 30x3y + 24x2y2 - 6xy
- 5x(a - b) + 6y(a - b)
Q20. Factorize:
- 9x2 - y2
- (3 - x)2 - 36x2
- (2x - 3y)2 - (3x + 4y)2
- 16x4 - y4
No comments:
Post a Comment