Extra Questions on Polynomials Class 9
Q1. Find the remainder when y3+y2−2y+5 is divided by y - 5.
Q2. Determine the remainder when p(x) = x3+3x2−6x+15 is divided by x - 2.
Q3. When f(x)=x4−2x3+3bx2−ax is divided by x+1 and x - 1, we get remainder as 19 and 5 respectively. Find the remainder if f(x) is divided by x - 3.
Q4. What must be subtracted from 4x4−2x3−6x2+x−5 so that the result is exactly divisible by 2x2+3x−2 ?
Q5. If (x + 1) and (x - 1) both are factors of ax3+x2−2x+b, find a and b.
Q6. Factorize each of the following expressions:
- 48x3−36x2
- 5x2−15xy
- 15x3y2z−25xy2z2
Q7. Factorize:
- 2x2(x+y)−3(x+y)
- 5xy(5x+y)−5y(5x+y)
- x(x2+y2−z2)+y(x2+y2−z2)+z(x2+y2−z2)
- ab(a2+b2−c2)+bc(a2+b2−c2)+ca(a2+b2−c2)
Q8. Factorize each of the following expressions:
- 25x2y2−20xy2z+4y2z2
- 4x2−4√7x+7
- a2b2+2+b2a2
- 4a2+12ab+9b2−8a−12b
Q9. Factorize each of the following:
- 25x2−36y2
- 2ab−a2−b2+1
- 36a2−12a+1−25b2
- a4−81b4
- a12b4−a4b12
- 4x2−9y2−2x−3y
Q10. Factorize by completing the square.
- a4+a2+1
- y4+5y2+9
- x4+4
- x4+4x2+3
Q11. Factorize by completing the square.
- a3−27
- 1−27x3
- 8x3−(2x−3y)3
- a8−a2b6
- a3−5√5b3
Q12. Factorize the following:
- 16p3q2+54r3
- a38+8b3
- 2√2a3+3√3b3
- 8a4b+1125ab4
- a7−64a
Q13.Q13. Factorize:
- x3+9x2+27x+27
- x3−9x2y+27xy2−27y3
Q14. Using identities, find the value of
- 1012
- 982
- (0.98)2
- 101 × 99
- 190 × 190 - 10 × 10
Q15. Expand using suitable identity
- (x + 5y + 6z)2
- (2a - 3b + 4c)2
- ( - a + 6b + 5c)2
- (- p + 4q - 3r)2
Q16. Expand using suitable identity
- (2x + 5y)3
- (5p - 3q)3
- (- a + 2b)3
Q17. Evaluate using identities
- 1023
- 993
Q18. Simplify :
- (2a + b)3 + (2a - b)3
- (4x + 5y)3 - (4x - 5y)3
Q19. Factorize:
- 30x3y + 24x2y2 - 6xy
- 5x(a - b) + 6y(a - b)
Q20. Factorize:
- 9x2 - y2
- (3 - x)2 - 36x2
- (2x - 3y)2 - (3x + 4y)2
- 16x4 - y4
No comments:
Post a Comment