Questions on Polynomials Class 9 SET - 2
Q1. Factorize the following by splitting the middle term:
- 3x2 + 19x + 30
- \(2\sqrt 2 {x^2} + 9x + 5\sqrt 2 \)
- 3x2 - 13x + 10
Q2. Factorize the following by factor theorem:
- x3 + 9x2 + 23x + 15
- x3 + 6x2 + 11x + 6
Q3. Factorize the following by using a suitable identity:
- 4x2 + 12xy + 9y2
- 2a5 - 54a2
- \(2\sqrt 2 {x^3} + 3\sqrt 3 {y^3}\)
- x5 - x
- x6 - y6
- (a - b)3 + (b - c)3 + (c - a)3
- x8 - y8
- 27x3 - 135x2 + 225x - 125
Q4. Evaluate the following by using a suitable identity:
- 9983
- (10.2)3
- 9982 - 4
- 9992 - 1
- (-25)3 + 103 + 153
- 10.2 × 9.8
Q6. If (x - 2) is a zero of x3 - 4x2 + kx - 8, find k.
Q7. If (x - 2) and (x + 3) are factors of x3 + ax2 + bx - 30, find a and b.
Q8. If x + y + z = 8 and xy + yz + zx = 20, find the value of x3 + y3 + z3 - 3xyz.
Q9. If a + b + c = 9 and a2 + b2 + c2 = 35, find the value of a3 + b3 + c3 - 3abc.
Q10. Find the value of (2.7)3 - (1.6)3 - (1.1)3 using a suitable identity.
Q11. Factorize the following by using a suitable identity:
- a3 + b3 - 8c3 +6abc
- \({\left( {\dfrac{a}{b}} \right)^3} + {\left( {\dfrac{b}{c}} \right)^3} + {\left( {\dfrac{c}{a}} \right)^3} - 3\)
- 8x3 - 27y3 + 125z3 + 90xyz
Q12. Find the value of a3 + 8b3, if a + 2b = 10 and ab = 15.
Q13. Find the value of a3 + 27b3, if a - 3b = - 6 and ab = - 10.
Q14. find the value of m and n, if y2 -1 is a factor of y4 + my3 + 2y2 - 3y + n.
Q15. (x + 2) is a factor of mx3 + nx2 + x - 6. it leaves the remainder 4 when divided by (x - 2). find m and n.
Q16. The polynomials kx3 + 3x2 - 3 and 2x3 - 5x + k leave the same remainder when divided by (x - 4). Find k.
Q17. Factorize: \({x^2} + \dfrac{1}{{{x^2}}} - 2\).
QQ18. If ab + bc + ca = 10 and a2 + b2 + c2 = 44. find a3 + b3 + c3 - 3abc.
Q19. Show that x - 2 is a factor p(x) = x3 - 12x2 + 44x - 48.
Q20. Factorize: x3 - 2x2 - 5x + 6.
Q21. If x + p is a factor of p(x) = x5 - p2x3 + 44x - 40. Find p.
Q22. Factorize:
- \({a^2} + \dfrac{1}{{{a^2}}} + 2\)
- 3(x + 2)2 + 17(x + 2) + 10
- 4x2 - 9y2 + 20x + 25
No comments:
Post a Comment